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The conjecture of Vainshtein & Zel’dovich (1972) concerning the existence of a fast 
dynamo (i.e. one whose growth rate is independent of magnetic diffusivity r] in the 
limit r ] + O )  is discussed with particular reference to (i) the stretch-twist-fold cycle 
which can double the strength of a magnetic flux tube, and (ii) the space-periodic 
Beltrami flow of maximal helicity, which has been shown to be capable of space- 
periodic dynamo action with the same period as the velocity field, by Arnold & 
Korkina (1983) and by Galloway & Frisch (1984). The topological constraint 
associated with conservation of magnetic helicity is shown to preclude fast dynamo 
action unless the scale of the magnetic field is almost everywhere of order r]i as q + O ;  
in this case, the field structure is severely singular in the limit. A steady incompressible 
velocity field, quadratic in the space variables, is shown to mimic the action of the 
stretch-twist-fold cycle, and is proposed as a plausible candidate for fast dynamo 
action. 

1. Introduction 
The term ‘dynamo action ’ in magnetohydrodynamics is generdly used to describe 

the systematic and sustained generation of magnetic energy as a result of the 
stretching action of the velocity field u(x, t )  on the magnetic field B(x, t). This action 
is described by the induction equation 

(1 .1)  _ -  a B - ~  ~ ( ~ A B ) + ~ v z B  ( v . B = o ) ,  
at 

where r] is the magnetic diffusivity of the fluid (see e.g. Moffatt 1978). 
In a purely kinematic approach to the dynamo problem, the velocity field u is 

regarded as known, and in particular the back-reaction of the magnetic field on u (via 
the Lorentz force distribution) is assumed negligible. This known velocity field may 
satisfy certain dynamic constraints (e.g. those imposed by the Euler equations or the 
Navier-Stokes equations, with or without Coriolis forces, buoyancy forces, etc.) but 
it is convenient to adopt a general approach in which u is freed from any such dynamic 
constraints, and we simply investigate the general behaviour of solutions of (1 .1)  for 
a wide class of velocity fields u,  which are supposed to satisfy only the mild kinematic 
constraint of incompressibility 

V ’ U  = 0. 

In the particular important situation in which u is steady, i.e. u = u(x) ,  (1 .1)  admits 

B(x, t) = Re { f ) (x)  ept}, (1.3) 

where p B  = v A (U A B)+r]vzB. (1.4) 

solutions of the form 
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Here p is the (possibly complex) growth rate associated with the field structure B(x) 
(which satisfies W*B = 0). I n  conjunction with appropriate boundary conditions on 
E)(x), (1.4) constitutes an eigenvalue problem; and if any of the eigenvalues 
p,, p2,p,, . . . have positive real part, then the corresponding field structures 
Bl(x), Bz(x), B3(x), . .., grow exponentially in time. The associated dynamo is oscilla- 
tory or non-oscillatory in type according as the imaginary part of p is non-zero or 
zero respectively. 

The distinction between ‘fast ’ and ‘slow ’ dynamos has been introduced by 
Vainshtein & Zel’dovich (l972), and the distinction provides the basis for much of 
the discussion in the recently published monograph of Zel’dovich, Ruzmaikin & 
Sokoloff (1983). Suppose that the velocity field u(x )  is characterized by a lengthscale 
1, and a velocity scale uo, so that the timeseale characteristic of the motion (the 
‘turnover time’) is 

The magnetic Reynolds number associated with the flow is 

to = zo/uo. (1.5) 

Rln = uolo/r, (1.6) 

and we are particularly concerned in astrophysical contexts with the limiting 
behaviour when R, + 00. A dynamo with growth rate p = p, + ipit is said to be slow 
if 

and i t  is said to  be fast if 

p,to+O as R,+m, (1 .7)  

p,to+const > 0 as R,+ 00 ( 1  4 
(Zel’dovich & Ruzmaikin 1980). For a slow dynamo, the mechanism of field 
generation is diffusive in character (or a t  least involves magnetic diffusion in an 
essential way). All dynamos with laminar velocity fields ~ ( x )  for which detailed and 
rigorous calculations have been carried out are of the slow type; typically, for a slow 

(1.9) 
dynamo, 

p,to = O(R;;q) as R,-+oo, where 0 < q < 1 .  

The fast dynamo, if it exists, becomes (in some sense) insensitive to the value of 
T,I as 7 + O .  The first thing to  do is therefore to  examine the properties of (1.4) when 
we simply put 7 = 0, i.e. 

There are certainly solutions of the equation for which p = 0, viz those for which 

pB= W A ( U A B ) .  (1.10) 

B = p ( x )  u ( x ) ,  (1 .11 )  

u‘wp = 0. (1.12) 

where p ( x )  is any scalar function of position satisfying 

This is not, however, a fast dynamo, since p = 0. For certain obvious choices of U, 
there are also solutions of (1.10) for which p is pure imaginary. For example, if u is 
a rigid-body rotation with angular velocity i2, and B(x) is a sinusoidal function - e k i m 6  of the azimuth angle $ about the axis of rotation, then p = & imS2 ; but again 
p ,  = 0, and this is not a fast dynamo. 

In  $2, we shall in fact show that there are no localized solutions of (1.10) for which 
p ,  += 0. This means that any fast dynamo must involve diffusive effects in a crucial 

t Suffixes r and i will throughout refer to real and imaginary parts. 
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FIGURE 1.  The stretch-twisb-fold cycle ; is this a fast dynamo ? 

way, and it can do this only if the field f) varies on a scale O($) so that q Vzf) = O( 1 )  
as q + O .  We shall show in 53 that, if the relative helicity of a fast-dynamo magnetic 
field is 0(1) ,  then this scale-refinement effect must occur throughout a fraction of the 
available volume that remains 0 ( 1 )  as q + O  (and not, for example, only in the 
neighbourhood of a set of singular surfaces). 

These results do not prove the existence of a fast dynamo - they merely describe 
what i t  must look like if it  does exist. It is desirable to have a much more detailed 
picture, and for this purpose there are two candidates for fast-dynamo action which 
deserve detailed study. 

(a)  The stretch, twist and fold dynamo. This is the prototype fast dynamo proposed 
by Vainshtein & Zel'dovich (1972). An initially circular flux tube of small cross-section 
is subjected to a stretch, twist and fold sequence as indicated in figure 1,  like the 
doubling of an elastic band. To get back exactly to the initial configuration, with a 
doubling of the field strength, a little diffusion is evidently needed to eliminate the 
crossing of field lines in the neighbourhood of the point P; but if it is accepted that 
this can be achieved, then the doubling time should be of order lo/uo = to, the 
timescale for the stretch-twist-fold cycle, independent of q.  We shall study this 
process closely in $4, and show that the effect of diffusion is crucial in determining 
the field structure that may develop under many iterations of the cycle. We shall also 
construct an Eulerian velocity field which incorporates the stretch, twist and fold 
ingredients, and which is proposed as a candidate for a localized fast dynamo. 

(b) The space-periodic Beltrami dynamo. A second veliocity field that has attracted 
recent attention in the fast-dynamo context (Arnold & Korkina 1983; Galloway & 
Frisch 1984) is the space-periodic field 

u = ( U ,  sin kz+ U,  cos ky ,  U ,  sin kx+ U,  cos kz, U ,  sin ky + U ,  cos kx), (1.13) 

which satisfies the Beltrami condition 

o = V A u = ku, (1.14) 

and which is therefore a field of maximal mean helicity (u*o)  = k(U2) (angular 
brackets indicating an average over a cube of side 2 n l k ) .  The field (1.13) is of intrinsic 
interest because of the chaotic character of the streamlines when U, U ,  U ,  4 0 (Arnold 
1965; HBnon 1966), a property that may be conducive to fast-dynamo action. 
Mean-field and first-order-smoothing techniques (Roberts 1970; Childress 1970 ; see 
also Moffatt 1978, chap. 7) may be used to show that the velocity field (1.13) will 
act as a dynamo when R, is emall, the field B then growing on a scale L large compared 
with lo - k-l. As R, increases, the scale L decreases, and ultimately the techniques 
of mean-field electrodynamics are inapplicable. The approach of Arnold & Korkina 
(1983) and of Galloway & Frisch (1984) is to restrict attention to fields B(x, t )  that 
are space-periodic with the same period 2nlk as u (and with zero mean over the basic 
cube), and to compute the field evolution. Results obtained for R, up to 200 
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(Galloway & Frisch 1984) are suggestive of fast-dynamo action, although a more 
detailed analysis of field structure than is yet available will be required to confirm 
this behaviour. We return to this problem in $ 5 ,  where some general aspects of 
space-periodic dynamos are discussed. 

2. Topological constraints on a non-diffusive fast dynamo 

the frozen field equation 
Consider first the perfectly conducting situation in which 7 = 0 and B(x,  t )  satisfies 

_-  - V A (U A B) .  
at 
aB 

Suppose that B is localized in the sense that 

ekrIBJ+O a s r =  ( X ~ + O O  (2.2) 

for some k > 0, and let A(x,  t )  be a vector potential for B. Then it is well known 

H' = A - B  dV = const. (2.3) 
(Woltjer 1958) that s 
This invariant, the helicity of the field B, is essentially topological in character 
(Moffatt 1969), and is in fact a generalization of the Hopf invariant, described as the 
asymptotic Hopf invariant by Arnold (1974). 

A magnetic field with non-zero helicity is one for which there is a net linkage of 
lines of force. The fact that lines of force are frozen in the fluid implies that this net 
linkage cannot change, and this is reflected mathematically in the conservation of 
H'. It is therefore obvious that a field that has non-zero helicity cannot be amplified 
by dynamo action, since this would imply a corresponding exponential increase 
in 3?. 

This argument does not exclude the possibility that a field for which H = 0 (i.e. 
for which the net linkage is zero) may be amplified by dynamo action, with at most 
time-periodic change of structure, when 7 = 0. This possibility may however be 
eliminated by the following argument. 

We are concerned with the existence of solutions of (1 .lo) with p + 0 for given u(x) .  
We may include the possibility of compressible flow by introducing a density field 
p(x) ,  and a (steady) mass conservation equation 

V' (pu) = 0. (2.4) 

We shall consider two cases: 

which u-n = 0; 

surface we again denote by S. 
In either case, let the volume interior_to S be denoted by V .  

case A .  u(x) is localized in the sense that there exists a finite closed surface S on 

case B. u and B are space-periodic with the same basic cuboid of periodicity, whose 

Now if 2 is a vector potential for B, we may 'uncurl' (1.10) to obtain 

p i  = U A B - v @  (2.5) 

p A , = U A B ,  V A i , = B ,  (2.6) 

for soFe scalar field @. If p + 0, we may introduce the change of gauge 
A,  = A+p-IV@, so that 
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from which i t  immediately follows that 

Il'(vAAl) = 0. (2.7) 

If A,(x) were a real vector field, then this would be recognized as the conditicn for 
the existence of a family of surfaces g(x) = const., everywhere orthogonal to A,, i.e. 
for the existence of scalar functions f ( x ) ,  g(x) such that 

2, = fvg, B =  VfAVg. (2.8) 

In fact, the result (2.8) still holdst when 2, is complex, but nowf(x) and g(x) are 
complex scalar fields. Substituting (2.8) back in (2.6) gives 

pf v g  = U A (vf A v g )  = vf U'vg-vgU'vf, (2.9) 

and crossing this with Vf gives 

( p f + u * V f ) B = O .  (2.10) 

Hence at every point of space, either B = 0 or 

pf+u*Vf  = 0. (2.11) 

Suppose first that B is non-zero throughout V, so that (2.11) holds thoughout V. 
We easily deduce that 

( P + P * ) J  plfI2dV= - p(u-n)lfl2C.w. (2.12) 
V s, 

In case A the surface integral vanishes because u*n = 0 on S; in case B it vanishes 
by periodicity. So in either case it follows that p, = i ( p + p * )  = 0, and so we do not 
have a fast dynamo. a 

Now suppose that there exists a surface S, inside S on which B = 0, but such that 
B + 0 in the volume V, interior to S,. Then B(x, t )  = 0 (all t )  on S, and B(x, t )  + 0 
in V,. By Alfvh's theorem, it follows that u-n = 0 on S, (since otherwise these 
conditions could not persist). We may then apply the above argument to the volume 
V,, and again we conclude that p ,  = 0. 

We may conclude therefore that, in all cases considered, a non-diffusive fast 
dynamo is impossible. -, 

Note that, if p = ipi #= 0, then from (2.9), a t  all points where B -+ 0, we must have 

} vfAvg+o. pf +U*Vf = 0, 

u-vg = 0 
(2.13) 

This can happen only if the streamlines of the flow are the intersections of the surfaces 
g, = const, gi = const, i.e. only for a very special (non-generic) class of velocity fields. 

3. Topological constraints on a diffusive fast dynamo 

fact, from (1 .1)  and the 'uncurled' equation 
In the presence of weak molecular diffusivity, helicity is no longer conserved. In 

-uuB-Vp-qVr\(Vr\A) (3.1) at 
aA _ -  

t This is a consequence of Frobenius' theorem in C3 (see e.g. Boothby 1975, p. 159). The result 
may be proved by elementary methods (following Ince 1925, p. 52) by regarding a, as an analytic 
function of 3 complex variables (5, y, z )  and ultimately restricting to the real axes. 
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we may readily obtain the equation 
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A * B  dV = -27 B * V  A (V A A )  dV, 
dt s 

where the integrals are throughout all space. Hence, even if 7 is very small, the 
helicity can change significantly when the field gradient becomes large. 

We may obtain an upper bound on the growth rate p ,  of a dynamo as follows. First 
we average (3.2) over a time 2n/pi; denoting this average by an overbar, (3.2) then 
gives 

p , J A B d V =  -7  s B*VA(VAA)dV. (3.3) 

By the Schwarz inequality, 

A (V A A )  dl '  < (SF dV)'(s(V A (V A A))2  dV)'. 

Defining the lengthscale I ,  characteristic of the field B by 

J ( V A ( V A A ) ) 2 d d = l i 4  s A2dV 

and the relative helicity XR (satisfying I XR I < 1 by 

J m d V  

XR = (Jz d V I P  d V)" 

we easily obtain from (3.3)-(3.6) 

lPrl < ~/ lb lJf 'R I  

I Z R  I' 1, < yf/Ipr I- or equivalently 

(3.4) 

(3.5) 

Now in general a velocity field that has non-zero helicity will tend to generate a 
magnetic field with non-zero helicity, so that in general there is no reason to  expect 
that X, should be small. If I 2, I = O(1) then (3.8) implies that l,/Z, is at most 
O(R2)  ; from the definition (3.5) i t  then seems likely that the scale of B must be O(R$ 
or less over an 0(1) fraction of the flow domain. 

The diffusive fast dynamo (if it exists!) therefore generates a magnetic field whose 
gradient is typically O(&m), and which evidently becomes non-differentiable over a 
substantial part of the flow domain in the limit Rm+m ( q + O ) .  The Lorentz force 
distribution in such a dynamo is 

F(x, t )  = j  A B =,Ui'(v A B) A B N PI,%, ZB, (3.9) 

and this also will vary on the scale I, .  This force will ultimately generate an additional 
velocity field u,(x, t)  on this same lengthscale, a process which must ultimately be 
responsible for equilibration of the growing field. 

Such a dynamo is totally different from the slow dynamos that emerge from, for 
example, the two-scale analysis of mean-field electrodynamics. In  these dynamos, the 
growing mean magnetic field has a scale L large compared with I , ,  and there is also 
a fluctuating ingredient on the scale 1, driven directly by the velocity field u. The 
Lorentz force acts either to  suppress the turbulence (Moffatt 1972) or to drive a 
large-scale mean velocity (Malkus &, Proctor 1975). I n  the fast dynamo considered 
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0 Cross-section 

FIGURE 2. The stretch u l ( x )  leads to flattening of the flux-tube cross-section to elliptic form. This 
is followed by the twist u,(x) and the plane strain u,(x) to bring the points A and B towards each 
other. 

here, the scale of the magnetic field is small compared with the scale of the velocity 
field u(x ) ,  and the Lorentz force acts to generate small-scale velocity fluctuations 
ul(x, t ) .  This is indeed a novel situation in the dynamo context. 

In  $4 we examine in detail the stretch, twist and fold dynamo described in $ 1, with 
a view to understanding just how it is that large field gradients can develop. 

4. Stretch, twist and fold dynamo 
Let us consider again the distortion process depicted in figure 1, but now taking 

account of the finite cross-section of the flux tube. Suppose that the centreline of the 
flux tube is initially the circle z2 + y2 = a; in the plane z = 0, and that its cross-section 
is initially a circle of radius c < a,. We shall suppose first that 7 = 0, i.e. that diffusion 
is totally negligible. 

The initial process of stretching (figure 2) may be achieved by the uniform 
incompressible straining field 

ul (x )  = (ax,ay, -2az), (4.1) 

with a > 0. Under the action of this field, the radius of the flux tube increases 

(4.2) 
exponentially : a(t)  = a, eat, 

being doubled after a time t,  = a-l ln2. A t  the same time the cross-section of the 
tube is flattened by the strain into an ellipse 

a(z-2a,)2+1622 = c2, (4.3) 
with semiaxes in the ratio 8: 1. Note that the volume of the flux tube V x 2n2c2a, 
remains constant. 

Consider now the twist stage. A twist about the x-axis is well-represented by the 

(4.4) 
velocity field 

where o(z) is antisymmetric about x = 0, the simplest possibility (uniform twist) 
being o(x) = - fx, wheref is constant (f > 0 for a right-handed twist), so that 

u&) = (0, - 4 x )  z , 4 4  Y), 

u2(x) = (O,fXZ, -fxy). (4.5) 
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Reconnect 

FIGURE 3. Twisting and reconnection of paper tape, or flux tube of elliptic cross-section. 

This is a twist of the kind that is applied to an elastic band in the doubling process, 
but it fails to mimic this process in that the points (0, &2a,, 0) (A and B in figure 2) 
remain fixed under the velocity field (4.5) and do not approach each other as 
suggested in figure 1. This approach in an ‘experiment’ with elastic band or paper 
tape is a natural consequence of the resistance of these materials to stretching, a 
feature that does not arise for the magnetic flux tube if the Lorentz force is negligible. 
(It is interesting to note here that a strong magnetic field subjected to twist would 
presumably respond in a nearly inextensible manner, so that, in a dynamic regime 
in which Lorentz forces are important, the elastic-band analogy may be more 
relevant.) 

In order to achieve the approach of the points A and B, we have to supplement 
the twist field (4.5) by a further strain field which compresses along the y-axis, but 
leaves the scale of the loop along the x-axis undisturbed. The two-dimensional strain 
field 

with B > 0 will do for this purpose. If the fields u, and u3 act simultaneously for a 
time t ,  = n/4a0 f, then the distance between A and B will be reduced to 

(4-7) 

Now, however, we are twisting not simply a closed curve, but a flux tube with initially 
elliptic cross-section. The twisting of a paper tape provides a better analogy. As a 
simple experiment will demonstrate, a right-handed twist applied to a paper tape 
induces a left-handed twist of the tape about its own centreline (figure 3).t If the tape 
is broken and reconnected a t  the points A and B (simulating the diffusion process), 
then the two loops thus created have the form of Mobius strips, each one having a 
net left-handed twist of A. 

Similarly the flux tube will develop what may be described as ‘intrinsic twist’ as 
a result of the action of the velocity field u,(x)  + u,(x). When reconnection takes place, 
this intrinsic twist manifests itself as helicity of the magnetic field. A ‘poloidal’ 
magnetic field has been generated, superposed on the original toroidal field round each 

u3(4 = (0, -PY,PZ) (4-6) 

6 = 2a0 e-& = 2a0 e-nSl4aof. 

t Certain features of this process have been recently considered by Berger & Field (1984). 
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FIGURE 4. Helical field B in a twisted tube of force; the poloidal part of the field B, is 
associated with a toroidal current j ,  which has zero integral over the tube cross-section 

I Y  I Y  

/ ‘  
I 

/ - Loops in 
(y, z)-plane - -  

i I  
FIGURE 5. Folding of two loops into near-coincidence, followed by translation U 

and rotation w to return to configuration of figure 2. 

loop. Thus the process is not unlike the process by which poloidal loops of field are 
generated by cyclonic eddies (Parker 1955), the process which underlies the a-effect 
of Steenbeck, Krause & Rildler (1966). In  the present context, the poloidal field is 
associated with a toroidal current flowing round each flux tube ; the net flux of current 
along the tube is however zero, since the poloidal field is confined to the neighbourhood 
of the flux tube (figure 4). 

To complete the stretch-twistrfold cycle, we require a velocity field u,(x) that 
represents the action of folding the two loops of figure 5 into near-coincidence. A field 
that will achieve this is 

with y > 0, g > 0. The gz2 ingredient deforms the loops out of the (x,z)-plane, and 
the remaining (plane-strain) part of (4.8) compresses both loops towards each other 
on the (y, 2)-plane. A small value of g (quo < y )  will suffice to achieve the necessary 
effect, in a time t, satisfying yt, 2 1. 

We now have a double loop in the (y, 2)-plane. To complete the process and to return 
to the initial configuration, we require a translation (of order a,) and a rotation 
about the y-axis; the velocity field 

U4(X) = (-Yx,yY+9X2,O), (4.8) 

U 5 ( X )  = (0, w ,  0) A X -  (0, u, 0) (4.9) 

with U x 2a,w/x will achieve this effect in a time t, = 2w/x .  
The velocity fields u,(x), u&), . . ., u,(x) should thus, in succession, and applied for 

suitable time intervals, achieve an approximate doubling of the initial magnetic field, 
but at the cost of generating a net twist in both of the new flux tubes. If these velocity 
fields act simultaneously, so that we have the steady velocity field 

u(x )  = u,(x)+u2(x)+ ...+ U J X )  

= (a’x+oz, pIy+gx2+ fxz- U ,  y’z--0s-fxy), (4.10) 

where a’= a-y, p’ = a+y-/3, y’ = -2a+B, (4.11) 
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then we may expect that the initial loop will be continuously deformed in a similar 
way, and indeed that the doubling process should be repeated again and again if the 
velocity field (4.10) is sustained. The particle trajectories associated with (4.10) are 
given by the dynamical system 

dx 
- = a’x + wz, 
dt 

(4.12) 

dz 
dt 
-- - y’z - wx - fxy, 

where a’ +p’ + y’ = 0, and where approaching of the two loops in the twist and fold 
process is achieved if a‘ < 0 and p’ < 0. This volume-preserving ( V - U  = 0) system 
clearly deserves close study, for various values of u’, p’, w ,  g, f ,  U ;  i t  seems highly 
likely that, in general, the trajectories are chaotic. 

The vorticity associated with the velocity field (4.10) is 

o(x) = ( -2 f x ,  2w+fy, 2gx+fz), (4.13) 

and the helicity, integrated over any sphere I x I < R, is 

(4.14) 

The motion therefore has a net right-handed or left-handed sense according as fa’ < 0 
or > 0. It is the helicity (4.14) which, in conjunction with weak diffusion, is 
responsible for generating helicity (of opposite sign!) in the magnetic field. 

The motion (4.10) is of course unbounded a t  infinity, and there is no guarantee that 
the trajectories of fluid particles will remain within a sphere r < R, no matter how 
large R may be. It is easy, however, to modify the velocity field (4.10) so that nearly 
all of the trajectories do all return to the neighbourhood of the origin. To do this, 
let A ( x )  be the vector potential of u ( x ) ,  a cubic function of the coordinates: in fact 

A ( x )  = [gx22- uz+i fx(z2+ y2), yzx-@(x2+22), -/3xy]. (4.15) 

Now define the modified vector potential 

AM(x) = A ( x )  e-‘lR (4.16) 

and the modified (solenoidal) velocity field 

UM(X) = v A A’(X). (4.17) 

Then clearly uM coincides with u for r < R, and yet is exponentially small for r 2 R, 
so that nearly all of the streamlines are forced to return to  the interior of the sphere 
r = R. Any magnetic field that is initially confined to  the sphere r 5 R will then 
probably remain so confined for all time (under the frozen field assumption). 

Let us now consider what happens when the stretch-twist-fold cycle is repeated. 
The stretch is now applied to two adjacent flux tubeseach of 8: 1 elliptical cross-section 
twisted in the form of a Mobius strip. The initial stretch in the (x,y)-plane again 
flattens the cross-section : where the long axis of the ellipse is initially parallel to the 
plane, the ellipse is further stretched till its axes are in the ratio 64 : 1, and where the 
long axis is initially perpendicular to the plane, the cross-section returns to the 
original circular form (but with the original radius). The twist about the x-axis 



Topological constraints on fast d ynarno action 

1 I z 1 u = (ax, ay, -2az) 

503 

I 
FIGURE 6. Section of flux tube when diffusion limits compression. 

again induces additional intrinsic twist in the flux tube - the twisting and reconnection 
of a Mobius strip leads to a Mobius strip (twist n) and a strip with twist 2n; in the 
case of flux tubes, if symmetry is maintained between the two daughter tubes, then 
each will have a twist of i$. The folding stage again leads to the superposition of these 
two tubes, which will moreover be linked with the neighbouring ‘cousin’ tubes. 

It is clear that, even after only two  stretch, twist and fold cycles, we have generated 
a field of considerable complexity. To be sure, the toroidal flux has increased fourfold; 
but poloidal field varying on a scale &c has been generated - and after n cycles the 
scale of variation would bf: ~ 1 2 ~ ~ .  This is in effect an exponential decrease of scale 
1,  - c e-t’to, where to is the timescale of the stretch-twist-fold cycle. Clearly, 
molecular diffusion, neglected in the discussion so far, must intervene to eliminate 
these field variations as well as to achieve the reconnection of flux tubes. It seems 
clear that we are dealing with a fast dynamo of the diffusive rather than the 
non-diffusive type (see $3). Let us now consider the effects of diffusion in more detail. 

For the sake of argument, suppose that the initial stretch (4.1) is maintained for 
a long time until the smaller dimension of the cross-section of the tube is reduced 
to O(v /a ) i ,  at which diffusion becomes important. This lengthscale does not then 
reduce further (figure 6). However, the larger dimension of the cross-section continues 
to increase like ed, and, since the total toroidal flux in the tube is constant during 
the stretch process, the field intensity must decrease like e-ut. In  fact, if we move with 
the flux tube, the relevant local solution of (1.1) with the velocity field (4.1) is 

~ ( z ,  t )  = B, e-ut e-uzp/T. (4.18) B = (0, B(z, t ) ,  0 ) ,  with 

This type of behaviour in which the decrease of scale in one direction is limited by 
molecular diffusion was discussed in the context of scalar-field diffusion by Batchelor 
(1959); its importance in the dynamo context has recently been emphasized by 
Zel’dovich et al. (1984). 

When we are on this small lengthscale, i t  is evident that, in the stretch-twist-fold 
cycle, the toroidal field is not doubled - it  is halved! The toroidaljuz is nevertheless 
doubled, because there are now two adjacent flux tubes each with double the original 
cross-section. Repetition of the cycle leads to continued increase of the net cross- 
section, and the structure of the field that finally emerges from many repetitions will 
undoubtedly be very different from the initial simple circular flux tube of small 
cross-section. 
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5. The space-periodic Beltrami dynamo 
A Beltrami flow is one for which V A u = Lou, where k,  is constant. Such a flow 

has maximal helicity, and for this reason is of particular interest in the dynamo 
context. The helical wave 

(5.1) ul (x , t )  = (0, U,  sin(k,z-w,t) ,  U ,  c o s ( k , z - q t ) )  

satisfies the Beltrami condition, and has helicity 

Xl = (u;V h u,> = k, U,Z. 

Similarly, defining 

u,(x,t) = ( U ,  cos (k , y -w , t ) ,O ,  U2 sin(k,y-w,t), 

u3(x, t )  = (U ,  sin(k,z-w,t), U, c o s ( k , z - o , t ) , O ) ,  

(5.3) 

(5.4) 

the velocity field 
(5.5) 

satisfies V h u = k, u and has helicity 

S? = ( u ' V A U )  = ko(U,2+U,2+U;). (5.6) 

The flow (5.5) is an exact solution of the Euler equation in a rotating fluid; in a frame 
rotating with angular velocity 52 this equation may be written 

and it is easily verified that this is satisfied by (5.5) provided 

= wz9 w 3 ) ,  (5.8) 

and provided p is suitably chosen. When w1 = w, = w3 = 0, we have the steady flow 
( 1.14) discussed briefly in 5 1. 

It is well known that flows of this type are capable of dynamo action on 
lengthscales L large compared with k;' (Childress 1970 ; Roberts 1970). Indeed, there 
is an a-effect associated with the motion (5 .5) ,  which, on first-order-smoothing theory, 
is given by the tensor 

where (5.10) 

(Moffatt 1978, $7.7). When the frequencies w, are non-zero, d n ) + O  as q + O ,  a 
property that persists at all higher orders of perturbation theory (Dillon 1974). 

If, for simplicity, we consider the isotropic situation 

then at, = arSij, where 

I u1 = u2 = u, = u, 

w1 = o2 = w3 = w ,  
(5.11) 

(5.12) 
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Similarly, there is an augmentation of the molecular diffusivity given by 

(5.13) 

where E = $U2 is the mean kinetic-energy density of the motion (S = 2k, E). The 
important point here is that 

(5.14) 

and, although this is a result of first-order-smoothing theory, it may be expected to 
hold at higher orders of perturbation theory also. 

The mean-field equation, describing evolution of a field B, on a scale large 

aB0 
at 

compared with k;l, is 
- x a V  A B,+ ( p + P )  V2B,. (5.15) 

This has non-oscillatory dynamo solutions of force-free structure (V A B, = KB,) 
whose growth rate p is given by 

p = a K - ( T + P ) P .  (5.16) 

The maximum growth rate occurs for 

(5.17) 

and, if we adopt the expressions (5.12) and (5.13), then 

(5.18) 
m =  K lYk; 

k,  2[ V k ;  + (w2 + rfk;)]  ’ 

so that K ,  < k ,  (as required for self-consistency of the approximation (5.15)) 
provided 

w2+y2ki  9 V k ; .  (5.19) 

As U increases (for fixed w and q ) ,  the preferred scale of growth of the field B, decreases 
towards the scale k;l of the velocity field, and the methods of mean-field theory 
become progressively less reliable. 

The alternative approach (Arnold & Korkina 1983 ; Galloway & Frisch 1984) is then 
to restrict attention to a field B(x, t )  with the same periodicity as the field u and with 
zero mean over a basic cube of side 271/ko. The results (2.5) and (2.6) apply equally 
if V is taken to be this cube - so, if 7 = 0, the magnetic helicity in the cube is constant. 
The arguments of §§2 and 3 then imply that, if we have a fast dynamo (p, = O(1)) 
with non-zero magnetic helicity, then the scale of variation of the magnetic field must 
be of the order R2 k;l nearly everywhere. In spectral terms, the spectrum of B may 
pzak at  wavenumbers of order k,, but the spectrum of V A B must have strong 
contributions at wavenumbers of order Hrn k,. The situation is consistent with the 
statement of Galloway & Frisch (1984)t that “spectra of the growing or decaying 
modes show that the value of the wavenumber k at which the energy peaks is 
surprisingly insensitive to R, though the length of the tail appears to increase roughly 
as the square root of R”. In  the range of wavenumbers k, < k < &, k,, the magnetic 
spectrum function M ( k )  presumably has a power-law dependence of the form 

M ( k )  - k-q, 0 < q < 3. (5.20) 

t Galloway & Frisch restrict attention to the steady case (a1 = o2 = wI = 0) and present results 
for R( = R,) < 200. 
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If the process of field distortion is qualitatively similar to that of the stretch- 
twist-fold dynamo of 84 then it would appear that  the fluctuation of V A B that is 
generated a t  any scale k-I is related to  the twist effective at that scale, and for the 
motion (5.5) considered, this twist is independent of k.  This suggests that ( k 2 M ( k ) )  k 
should be independent of k, i.e. that  q = 3 in (5.20). The integral of k2M(k) is then 
logarithmically divergent as 71 --f 0, corresponding to the non-analytical character of 
the magnetic field in this limit. The results available a t  present (Galloway, private 
communication) suggest that  M ( k )  in fact falls off more slowly than k-3 in the range 
k, < k < &m k , ;  the reasons for this are not as yet clear. 

6. Conclusions 
The fast dynamo is a dynamo whose growth rate p ,  is independent of 71 in the limit 

v + O .  I ts  existence, as a phenomenon distinct from the more familiar slow dynamo, 
has not yet been rigorously established for a steady flow. This paper has been devoted 
to a discussion of its structural properties, if it does exist. We have shown firstly that 
a ‘non-diffusive’ fast dynamo does not exist, and secondly that, for a ‘diffusive’ fast 
dynamo, the scale of variation of the magnetic field of a growing helical mode must 
typically be O ( R 2 )  and diffusion must play the key role in resolving the conflict 
between magnetic-helicity invariance and exponential field growth. The stretch- 
twist-fold dynamo has been examined in some detail, and the mechanism by which 
fine structure appears in the magnetic field has been revealed. A similar fine structure 
must appear in the space-periodic dynamo of Arnold & Korkina (1983) if, as suggested 
by the computations of Galloway & Frisch (1984), this is indeed a fast dynamo in 
the limit Rm+ 00. 
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